
The Ultimate 
QA Testing Handbook    
Everything you need to know, to test how you want.

linkedin.com/company/global-app-testing

twitter.com/qaops

www.globalapptesting.com

info@globalapptesting.com

UK +44 (0) 330 808 0106

US +1-800-461-2670
facebook.com/globalapptesting



Introduction....................................................................03 
 
 
Chapter 1 - QA Testing...............................................04

Chapter 2 - Regression Testing..............................10

Chapter 3 - Crowdtesting.........................................18

Chapter 4 - Functional Testing...............................26

Chapter 5 - Localization Testing............................33

Chapter 6 - Exploratory Testing............................42

Chapter 7 - Manual Testing......................................47

Chapter 8 - Agile Testing...........................................55

Chapter 9 - Usability Testing...................................66

Final Thoughts................................................................68

Contents



Introduction
Let’s start off with the basics.

Unless you know exactly how, when, why and for whom your software 
testing should be conducted, the results you receive are bound to be 
lackluster in their impact.

So whether you’re after increased customer acquisition, decreased user 
churn or better app store ratings, building the foundation of an effective 
testing strategy is paramount.

Admittedly, it’s easy for anyone to be confused by the sheer number of 
testing types, how they overlap and what benefits they actually provide. 
At the end of the day, it’s all about proving value; without it, why even 
bother?

And so our Ultimate QA Testing Handbook enters the ring, battling this 
confusion and offering a collection of need-to-know insights and best 
practices for QA teams. 

Now let’s jump in.



Chapter 1 - 
QA Testing



THE ULTIMATE QA TESTING HANDBOOK

5

What is Quality Assurance Testing?
Quality Assurance (QA) testing is the process of ensuring that your product is of the highest 
possible quality for your customers. QA describes simply the techniques used to prevent 
issues with your software product or service and to ensure a great user experience for your 
customers. With that said, what are the QA best practices you need in your repertoire?

 
Writing good test cases
Should developers write tests? On the one hand, the Agile approach is about ownership; 
so involving developers in the test case writing process and making QA one of their 
responsibilities is understandable.

However, on the other hand, developers who create tests might become biased and write 
code that will pass the test without meeting other quality standards or unconsciously create 
a test with limited coverage. With this approach, developers often can’t see the wood for 
the trees.

It is for this reason that teams create a test plan but outsource the process to QA engineers 
skilled in testing and more suited to detect bugs that often crawl through to production.

 
With this in mind, here’s our four top tips on how to write good test cases:

1.
Write each test case with a narrow focus, but remember to retain cohesion 
across your entire test case suite. Your test case suite should have a scope that 
is adapted to the scale of your project.

2.
Customize and execute test cases in an environment that is different from the 
one used for development. Each test should be based on clear expectations and 
result in a measurable outcome.

3.
Break down each test case into a series of concise steps. Taking these steps 
will tell you whether or not a feature works. You can think of writing a test case 
as a series of actions associated with a question. When an action is taken, the 
automated test or human testers should answer a simple question to measure 
the success of the action.

4.
The instructions written for each test case should give testers a clear 
understanding of what they are expected to do. You can save time and get 
better results by providing test cases, instructions and tutorials that aren’t liable 
to misinterpretation. There are testing tools available to make this even easier.

https://dzone.com/articles/how-to-write-better-qa-tests


THE ULTIMATE QA TESTING HANDBOOK

6

Continuous integration and continuous delivery 
 
Continuous integration (CI) and continuous delivery (CD) are strategies used in software 
development that complement the Agile methodology. You can incorporate a continuous 
testing strategy into CI and CD.

Without CI and CD, developers split up their work and assemble different segments of the 
code late in the development cycle. This can result in a lack of cohesion, compatibility and 
issues with how the different segments of the code interact.

With continuous integration, the code is kept in a central repository. Developers work on 
making small changes to the code and upload small sections of it to the central repository 
regularly. You can incorporate quality management into this methodology by including 
a series of tests performed every time the code is updated. The new segments need to 
be tested, but you should also conduct regression testing to see how changes affect the 
product’s main features.

Continuous delivery allows you to release new iterations of your product on a regular basis. 
This is a quick and efficient approach to addressing bugs and issues that affect the user 
experience.

The key is to incorporate user feedback into your CI and CD processes so that issues can be 
addressed quickly and a new and improved version of your product can be released.

Again, you will have to incorporate testing in your process, for instance, by having crowd 
testers perform usability tests before a new major version of your product is made available 
to users.

https://smartbear.com/learn/automated-testing/the-continuous-development-pipeline/


THE ULTIMATE QA TESTING HANDBOOK

7

Developing your own  
QA Testing strategies
The right QA Testing methodology will provide the 
information needed by your design and development teams 
to produce a quality app. Remember that software quality 
doesn’t depend on testing but rather on the outcome of 
your QA tests and how you use such data.



THE ULTIMATE QA TESTING HANDBOOK

8

Adapt your approach to QA testing to the product you are developing. 

1. Focus. Establish clear objectives for each test, and test only one component at 
a time, for instance a specific user interface or security feature.

2. Familiarize. Understand the breadth of testing types on offer, how to use each 
and the insights they provide.

3.
Repeat. Test main features more than once with regression tests. New 
additions to the code repository can interfere with features that previously 
passed tests.

4.
Report. Determine how bugs will be reported and what kind of data is needed. 
Will you use an open-source bug tracking tool or build one that’s specifically 
suited to your workflow?

5.
Analyze. Establish QA metrics early to ensure they’re consistently tracked. 
Keep records of every test conducted, and use this data to determine where 
bugs are likely to occur. This data will help you to develop new tests that 
address problem areas.

6. Localize. Test in different environments to cover a wide range of scenarios, 
devices, operating systems and user personas.

7.
Unit and Integration Testing. While Unit Testing isolates each component of 
your app, integration tests assess how well each subsystem works. Run unit 
tests in parallel to save time, but only move onto integration tests once you’ve 
ensured individual components work as they should.

8.
Delight customers. Humans testing end-to-end scenarios through Functional 
Testing provide user experience insights that other testing types do not. Wait 
until issues detected from Unit and Integration Testing are resolved before 
deploying Functional Testing.

https://www.globalapptesting.com/blog/the-ultimate-guide-to-software-testing-how


THE ULTIMATE QA TESTING HANDBOOK

9

Achieving high quality and speed 
 
Whether you’re building a web application, downloadable software or an API, delivering 
quality and speed are key objectives for a successful release, yet often in battle with each 
other. To ensure both are achieved, review your QA Testing process regularly as you move 
through the different cycles of your project.

The code used for automated tests should also be tested, and written tests sent to human 
testers should be carefully reviewed. Make it easy for everyone involved with your project 
to report bugs and share feedback.

Maintaining a list of clear quality objectives is crucial for achieving high quality and speed.
Align your quality objectives with users’ expectations, and use these objectives when 
writing test cases. You should also take into account the ISO 9000 quality management 
standard and your stakeholders’ needs.

 
Working with a clear set of quality objectives will help developers, testers and designers 
better understand what’s expected of them and foster an environment where everyone 
owns quality.

Also remember to focus on efficiency, as this directly impacts your team’s day-to-day. Using 
an off-the-shelf bug tracker like Jira is the best way to keep track of quality issues and 
ensure they’re addressed in a satisfactory and timely manner.

Lastly, your QA strategy should be unique to the product you are developing and its 
lifecycle. Keep it aligned with the scope of the project, your definition of quality and end 
users’ expectations.



Chapter 2 - 
Regression 
Testing



THE ULTIMATE QA TESTING HANDBOOK

11

What is Regression Testing?  
 
What tools are available? How is it performed?

Regression Testing forms an essential component of any strong testing strategy, so this 
chapter is designed to provide a fundamental understanding of it, regardless of your 
company size or software offering.

Automated Regression Testing
When thinking about Regression Testing, 
it’s understandable why you may want to 
tack “automated” to the beginning of it. 
Automation is afterall the buzzword that 
keeps on buzzing. Furthermore, Regression 
Testing is repetitive and manual, so why not 
automate it?

Regression tests are the perfect candidate 
to be automated - in certain circumstances.

Automated approaches to Regression 
Testing make sense when developers 
are able to write and maintain the 
scenarios required to complete the testing 
appropriately. This means that developers 
are responsible for maintaining proper test 
scripts for their regression test cases.

In other words, Automated Regression 
Testing is only as good as your regression 
test scripts.

Regression test scripts
Regardless of how you perform Regression 
Testing (manually or automated), you’re 
going to need a robust set of regression test 
scripts.

Regression test scripts are the foundation 
of your regression.

Unfortunately, regression test scripts are 
quite likely the most time-consuming part 
of any QA professional’s job! Regression 
test selection can be a tricky process, as 
due to their critical nature, you must write 
scripts that cover every possible scenario 
you can think of. You need to spot any side 
effects, any impact on dependencies and 
any problems the new changes might cause.

But what happens if you fail to cover every 
possible scenario?

Regression test scripts only test what you 
tell them to - automated or not.

The person who writes the test script must 
ensure that it considers all variations and 
flows, which demands a massive amount of 
work and upkeep.

Any time there is a change in your product 
or software, checking regression test 
scripts for accuracy is required. Otherwise, 
determining whether a failure is because 
of a bug in your code change or a poorly 
written test script will be impossible.



THE ULTIMATE QA TESTING HANDBOOK

12

Automated Regression Testing tools for web applications
 
One of the more interesting developments in recent years has been the proliferation of 
testing tools designed for web applications to perform Automated Regression Testing.

Automated Regression Testing tools for web applications are designed to alleviate as much 
effort as possible for humans, redistributing such efforts to machines. Sounds great, right?

In theory, Automated Regression Testing tools are ideal, as they free up your team to focus 
on more important functions. However, the answer is much more complex and nuanced. As 
discussed above, any type of Regression Testing is only as good as the test scripts used to 
execute it.

An automated regression test suite for web applications can save significant time, energy 
and resources as long as you’re prepared to put in the effort to maintain it properly. And this 
effort can be much more of an undertaking than originally anticipated.

While automation has its benefits, the time and energy upkeep makes the case for 
incorporating Manual Testing into your testing process.

In the near-term future, however, newer tools will solve these issues by building “smart” test 
scripts requiring much less handholding!



The age of Agile is upon us!

This probably contradicts what we’ve been talking about so far, with 
Regression Testing requiring specificity and detail to be effective.

Regression Testing in Agile simply requires that the agility of software 
development cycles and sprints are taken into account. Modern 
engineering teams will already be Agile and most likely pursuing some 
level of DevOps too.

This means that the right systems, processes and procedures must first 
be in place before Regression Testing in Agile can begin. Prioritization 
is key - you’re still required to build out test scripts and decide on the 
level of coverage you want to achieve.

This is where a proper Regression Testing strategy for Agile becomes 
vitally important...

“Agile Testing leaves very little time for documentation. It relies 
on quick and innovative test case design rather than elaborate 
test case documents with detailed steps or results.”

- Nishi Grover

https://www.globalapptesting.com/blog/key-qa-and-testing-takeaways-from-the-agile-manifesto


THE ULTIMATE QA TESTING HANDBOOK

14

Developing an Agile Regression Testing strategy
 
If you’re developing with the Agile methodology (and if you aren’t, why not?), then 
developing a robust software testing strategy that encompasses Regression Testing should 
be at the top of the list.

The level of sophistication of your company and team will impact your Agile Regression 
Testing strategy over the long term. There are three basic phases of all products:

• Validation: product-market fit

• Predictability: creating a stable infrastructure for scale

• Scaling: minimizing negative impact to unlock growth 

Adjust your Regression Testing strategy according to the level of maturity of your product.

Don’t simply assume that you should start automating every part of your Regression 
Testing because you’ll waste valuable time that could have been dedicated to the product 
development itself!

“When things begin to break, it’s not necessarily a sign that your QA 
has begun to fail. It could just indicate that your needs have changed, 
and so you need to change your strategy to succeed.”

- Excerpt From: Leading Quality, by Ronald Cummings-John and Owais Peer



THE ULTIMATE QA TESTING HANDBOOK

15

Regression Testing in a sprint
One of the many benefits of Regression 
Testing in a sprint is that it can happen as 
soon as the latest iterations are put into 
the deployment flow. Depending on your 
setup, this means that Regression Testing 
in a sprint can act as your CI/CD tool.

But why does it matter if it’s performed in 
a sprint, anyway?

Well, according to Dan James and Bryan 
Aho, it could save you a lot of money - 
upwards of $5,000.

Ultimately the ability to save time and cash 
is a major boost for any development team!

During sprints, testing often receives the 
least amount of time dedicated to it, so 
maximizing efforts should be a top priority.

Regression Testing vs. Unit Testing
New to the world of QA? A common 
question we’re asked is to explain the 
difference between Regression Testing and 
Unit Testing. So here we go...

Think of Unit Testing as the individual 
testing of specific components or 
enhancements in your software or product. 
It’s the smallest amount of testing that can 
be carried out.

Compare the unit test then to a regression 
test, and you can see that regression is the 
sum of all its parts.

Unit tests must always be executed by 
the developer and should be built into the 
code itself. Regression tests can be created 
by anyone and run externally from the 
codebase.

Regression Testing vs. Functional Testing
A big debate in the world of software development QA is the role of Regression Testing vs. 
Functional Testing.

Can you get away with simply running regression tests alone? In our humble opinion, no.

While there are plenty of companies that rely on Regression Testing alone, only Functional 
Testing can provide an entirely holistic view of how your app actually works for the user.

Sure, Regression Testing will tell you if a certain feature no longer works (like your checkout 
flow), but it won’t tell you if the new feature you’ve built works as intended.

This is where your Regression Testing strategy comes to the fore.

If you don’t know what your entire testing strategy is in the first place, it’s going to be 
impossible to know what kind of tests you need to employ at each stage of the software 
development life cycle.

You need to use different types of testing at different stages, so it’s critical not to write off 
either Regression or Functional Testing at any point. They each have different, important 
parts to play.



Real-world applications of  
Regression Testing
 
By now, the role of Regression Testing and its benefits for your company should be clear.

But, just in case it isn’t, let’s examine some examples where more Regression (or more 
complete regression) Testing would have revealed holes and avoided calamity.

In January 2012, UK retailer Marks and Spencer accidentally priced TVs at £199 
instead of the £1099 for which they should have been listed. Regression test 
scripts should have been written to check the price against the database, resulting 
in simple bug fixes rather than potential losses.

In 2016, Nest Thermostat received an upgrade that paralyzed devices 
due to a bug in the firmware. This left customers out in the cold during 
one of the coldest weekends of the year! Nest should have regression  
tested the devices before launching the new update.

In December 2018, O2 released a software update internally 
that caused 30 million users to lose access to data. Surely 
a couple of regression tests could have confirmed the new 
software would have caused this?

These are just a handful of failures that could have been avoided had Regression 
Testing been better incorporated in the company’s testing strategy.

https://www.globalapptesting.com/blog/how-bugs-impact-your-company-infographic
https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html#slide3


THE ULTIMATE QA TESTING HANDBOOK

17

How important is Regression Testing for your business?
Realistically speaking, Regression Testing is only as important as the level of maturity of your 
product, as we’ve previously examined.

You and your team must first identify your product’s maturity level and then develop the 
appropriate testing strategy to compliment it. Here are some example questions to ask 
(taken from Leading Quality):

• What testing types make the most sense for our product’s current stage?

• How can we optimize the feedback loops of our test execution so that our 
engineers get the most value from them?

• Do we need to reach outside our company to external partners to increase the 
team’s capabilities or capacity?

• Where can we utilize external partners to fill in short-term or long-term gaps?

We hope that this guide has helped to dispel some of the myths surrounding Regression 
Testing!

Keep in mind that your testing strategy, including Regression, Functional and Unit Testing, 
should be adjusted and updated constantly. Think of Regression Testing as a single pillar that 
holds up the overall quality of the software application that you provide to your customers.

Because after all, we’re developing software for humans to use and enjoy.

“In order to improve testing at Blackboard, Ashley and her team 
didn’t reduce the time it took for the regression tests to execute. 
Instead, they focused on breaking up the testing into smaller sections 
so that they were running the most valuable tests at the right time.”

- Excerpt From: Leading Quality, by Ronald Cummings-John and Owais Peer



Chapter 3 - 
Crowdtesting



THE ULTIMATE QA TESTING HANDBOOK

19

What is Crowdtesting?
Crowdtesting is all about harnessing the power of a “crowd” of testers to conduct various 
types of tests. These can include functional testing, exploratory testing, regression testing, 
localization and test case execution

Crowdtesting does not replace the entirety of your QA team or overhaul your entire strategy 
but rather builds upon your existing QA process, scaling it with the help of a pool of testers 
spread across the globe.

By harnessing the power of the crowd, QA teams access thousands of professional testers 
without turning to hire internally. The globality of a crowd enables localized testing, 
providing users with a digital experience that looks and feels as if it were designed exactly 
for them.

How’s that for customer delight? At Global App Testing, our crowd has more than 55,000 
testers in 189 countries with access to a broad range of OS and device combinations. Our 
refined algorithm selects the best testers for the right tests in real time.

https://www.globalapptesting.com/best-practices-for-qa-testing
https://www.globalapptesting.com/


THE ULTIMATE QA TESTING HANDBOOK

20

Advantages of Crowdtesting
1. Speed
By partnering with a Crowdtesting provider, 
you gain access to on-demand, remote 
testing from a team of skilled testers 
anywhere in the world. 

POV: You send off a test on Friday evening 
just as you close your laptop for the 
weekend. When returning back to work 
Monday morning, your results are at your 
doorstep!

With testers operating in different time 
zones and working untraditional hours, 
Crowdtesting provides QA teams with 24/7 
support. Feel confident in the knowledge 
that a tester will always be on hand to 
ensure your product works exactly as it 
should.

This expedited feedback loop means your 
team can work quicker to fix bugs and run 
more tests. With a streamlined SDLC and 
QA no longer considered a bottleneck, 
product releases will not only be faster but 
also of higher quality.

At Global App Testing, we use a blend 
of automation and Crowdtesting, so you 
receive exploratory test results from the 
crowd within 48 hours. Test case execution 
results can be produced in as quickly as 30 
minutes. Now how’s that for speed?

         

2. Scale
It’s safe to say that the ability to effectively 
scale is a common goal for most companies.

So as your business scales and customer 
base grows, QA must scale accordingly. A 
bug that impacts 10% of a 100-strong user 
base will quickly become a massive issue 
when user numbers reach 100,000.

Crowdtesting builds upon your QA 
capabilities and integrates seamlessly 
into your existing workflow, so your team 
remains productive and focused on high 
impact initiatives. 

This in turn enables your company to 
scale and expand testing exponentially - 
all without the burden of hiring an extra 
resource. No longer is scaling defined by 
recruiting new testers and automation 
engineers.

Reducing the pressures of finding available 
testers every time you finish or update 
code will increase your team’s capacity to 
work on bug fixes and strategy. 

And when your SDLC works like clockwork, 
it makes scaling a whole lot easier.

https://www.globalapptesting.com/
https://www.globalapptesting.com/blog/what-is-exploratory-testing


THE ULTIMATE QA TESTING HANDBOOK

21

3. Localization
Let’s say you want to launch your app 
globally. You’ve tested your app in the UK, 
and it works perfectly. So it should work 
just as well in new, global markets, right?

Not necessarily.

Language barriers, cultural nuances, local 
devices and network combinations all offer 
a host of potential roadblocks in your global 
product launches.

That’s where Crowdtesting comes in.

Leverage the crowd to perform Localization 
Testing in the countries of your choice, so 
you can rest assured your app works as 
effectively globally as it does in the country 
in which it was created. Moreso, user 
experience will increase, as the app will feel 
more native to them; say goodbye to that 
three star app rating and hello to five!

And... our testers love to test, and we love 
our testers!

It’s a fantastic way to work remotely, 
allowing freedom of working hours 
and increased financial security. They 
encompass one supportive, global 
community.

 

4. Quality
When testing internally, it’s common to be 
a bit biased or accidentally let a bug slip 
through the cracks; think of it like grading 
your own homework.

Crowdtesting provides local context from 
professional, unbiased testers across the 
globe who can spot bugs in-house teams 
might miss. Ensuring your app works as 
effectively worldwide as it does in the 
country it was created will undoubtedly 
improve product quality.

Speed, localization and the ability to scale 
all lead to one thing - higher quality.

https://www.globalapptesting.com/blog/top-5-localization-challenges
https://www.globalapptesting.com/blog/top-5-localization-challenges


What’s the difference between 
Crowdtesting and Outsourcing?

Great question.

Outsourcing typically involves passing the responsibility of your testing 
over to an external vendor, however, this doesn’t necessarily allow for 
scalability. You’re merely requesting testing resources you need at the time 
rather than expanding your capacity.

Additionally, the relationship between outsourcing vendors and their clients 
is often distant; you send off your tests only to receive raw results, with 
little guidance or suggestion on how to proceed.

Partnering with a Crowdtesting solution doesn’t simply mean “borrowing” 
another company’s resources. Global App Testing works within your current 
QA process, fitting seamlessly into your SDLC and integrating with your 
existing testing and development tools.

What’s more, with Global App Testing, each customer is assigned a 
dedicated Customer Success Manager to deliver continuous improvement. 
So, not only can you relish in increased scale, device and test coverage, 
but you can also reap the benefits of sharing best practices and the latest 
technologies. Whether that includes monthly business reviews, setting 
goals or reaching milestones, Global App Testing provides testing solutions 
as well as a strategic arm.



THE ULTIMATE QA TESTING HANDBOOK

23

5 advantages Crowdtesting holds over in-house testing
 
You might be wondering: “Why don’t I just hire internally to scale my testing?”

There’s a misconception that hiring internally solves all your scaling problems, providing 
you with a larger in-house team and more testing capacity as a result. But internal hiring 
requires a considerable budget and significant time dedicated to recruiting and training new 
employees. 

And when your user base grows again or if you want to expand to a new country, you’re 
going to face the same issues you did before. So, what makes Crowdtesting better?

1. Crowdtesting saves time
In Europe, the average number of days to fill 
an IT position is 66. In the US and Canada, 
the average number of calls or interviews 
needed to fill an IT position is 15.

Let’s imagine you find the right candidate 
in 50 days, and it takes 8 interviews. 
That’s a lot of time spent perfecting an 
in-house team.

If you look at your calendar right now, it’s 
likely difficult to even find an hour-long 
chunk of time to work on that project 
you’ve been neglecting. Those hours spent 
reviewing CVs and interviewing candidates 
probably feel a lot longer now.

But with Crowdtesting, you have immediate 
access to tens of thousands of testers 
across the world, all at your fingertips. This 
saves recruitment time, so you can begin 
testing immediately - and with faster results.

And the beauty of Crowdtesting is that 
testers operate in time zones all across the 
globe, each with working hours that suit 
your schedule. So while you’re fast asleep, 
testers are hard at work testing your 
product. How’s that for a stress reliever?

2. Crowdtesting improves quality
We’ve said it before but because QA 
is our lifeblood, we just have to say it 
again. Crowdtesting improves quality. 
And quality improves, well, a lot - ROI, 
customer experience, scalability, speed to 
market, confidence in release cycles - the 
list goes on!

The highest quality apps are tested on 
hundreds of devices and OS combinations. 

But what if you lack them in-house?

The last thing you want is to be scrambling 
last minute to order the new iPhone, 
OnePlus or Samsung device. This will 
inevitably slow down your entire SDLC as 
you twiddle your thumbs waiting for it to 
arrive. And while admittedly this is not the 
most tech-savvy approach, believe us, it 
does happen!

With Crowdtesting, you have access to 
testers equipped with a wealth of device/
OS combinations and networks. So now 
you can test on hundreds of devices 
without the time or commitment involved 
in buying them for your in-house testing 
team.



THE ULTIMATE QA TESTING HANDBOOK

24

3. Crowdtesting is cost-efficient
According to Glassdoor, the average salary 
of a QA tester in London is $35,464 a year. 
And for a QA automation engineer, that 
salary is even higher at $70,892.

That’s a huge number to beat, especially 
when you need multiple testers working on 
multiple projects; the costs really do start 
to rack up.

Crowdtesting, however, enables you to 
expand your testing capacity exponentially 
without having to pay for new testers every 
time. 

By leveraging our solution, you receive 
the best fitting 15-20 professional testers 
selected from a pool of 55,000 testers 
based across the world for each test - all 
with a scalable price solution. With a focus 
on budget efficiency, you’ll be able to run 
high-quality testing without the associated 
price tag.

4. Crowdtesting delivers fast results
52% of organizations struggle to find time 
to test mobile apps.

That’s because setting up test scripts, 
sourcing testers, analyzing results and 
prioritizing bugs all take time - especially in 
today’s fast-paced tech world where team 
capacity is stretched to the very limit.

With Crowdtesting, there’s no need to 
worry about sourcing testers, setting up 
complicated software testing tools or 
ensuring tests are of high quality.

Crowdtesting also works to eliminate 
unnecessary stress by fitting seamlessly 
into your SDLC and working with your 
existing QA strategy - not against it.

5. Crowdtesting provides experienced 
testers 
Finding effective testers isn’t always easy.

A great tester needs: experience, devices, 
time, efficiency, analytical skills and the 
ability to write detailed bug reports. So to 
be part of a crowd, testers must meet such 
standards.

Global App Testing employs only 
professionally vetted testers with 
considerable testing experience, so you can 
rest assured that your testers are of the 
highest quality. 

In fact, we’ve met a considerable number of 
testers from our crowd all over the world at 
our Testathon events.

High-quality testers catch high-impact 
bugs, and it’s the high-impact bugs that 
affect your users the most.

https://www.glassdoor.co.uk/Salaries/london-qa-tester-salary-SRCH_IL.0,6_IM1035_KO7,16.htm
https://www.payscale.com/research/US/Job=Quality_Assurance_(QA)_%2F_Test_Automation_Engineer/Salary


THE ULTIMATE QA TESTING HANDBOOK

25

Is Crowdtesting right for your team?
In today’s tech world, the advancement of technology continues to accelerate at a rapid 
pace. This means your customers demand quality in an over-saturated, competitive market.

To meet these demands, companies need to deliver quality experiences every single time, 
with new and exciting features their competitors don’t possess.

So with companies pressured to develop and release software more rapidly, the last thing 
they need is QA acting as a bottleneck.

If you want to continue to release software at speed without breaking the bank, 
Crowdtesting is the ideal solution. You might be thinking, “I don’t have the budget for it.” 
We’re happy to say that at Global App Testing, our on-demand solution works with any 
budget. It enables you to scale globally, remain cost-effective and ensure you’re delivering a 
quality product every time.

Crowdtesting fits seamlessly into your SDLC, working with existing processes to provide 
fast, actionable test results. This means your team can keep working to the best of its ability 
without being held back by the time-consuming, slow process of traditional QA.

What’s more, leveraging testers in almost any country gives you a competitive edge over 
your competitors, providing experiences that are fully localized and tailored to the individual 
user. And with churn rates at 71% after three months, this isn’t something you want (or can 
afford) to pass by.

So, if you want to minimize costs and save time while you scale, localize and deliver quality, 
Crowdtesting is your answer.



Chapter 4 - 
Functional 
Testing



THE ULTIMATE QA TESTING HANDBOOK

27

What is Functional Testing?
Functional Testing is a type of Black Box testing. It answers the fundamental questions:

“Does this actually work?”  
“Can the user do what we expected?”

This method of software testing assesses the functional requirements of an app, verifying 
whether the software works as per customer needs. Functional Testing is not concerned 
with how processing occurs, but rather, whatt the results of processing should be.

 
Functional Testing checks:

• The main functions of a piece of software or a web application.  
Quite simply, do the features work as intended?

• How easy is it to access?  
Can the end-user interact with everything they need to?

• Usability.  
The end-user should be able to make use of it without any difficulties.

• What happens when errors occur?  
Are there appropriate messages, and is there a way of logging them?

http://softwaretestingfundamentals.com/functional-testing/


THE ULTIMATE QA TESTING HANDBOOK

28

How to test software functionality

1. Identify and clarify the functions that you expect the software or web 
application to perform.

2. Create input data based on these functional specifications.

3. Determine the output based on these functional specifications.

4. Write and execute test cases to gather test data (these can be manual or 
automated tests).

5. Compare the results of actual and expected output.

6. Make changes if the results do not match the end user’s needs.

Non-Functional vs. Functional Testing 
 
So what is the difference between Non-Functional and Functional Testing?

The answer is relatively simple: Non-Functional Testing is concerned with the how, whereas 
Functional Testing is concerned with the what.

Functional Testing verifies what the system should do, and Non-Functional Testing tests how 
well the system works. Equally, Functional Testing is carried out to verify software actions, 
and Non-Functional Testing examines the performance of the software.

Another comparison you might see when discussing Non-Functional vs. Functional Testing 
is Black Box Testing vs. White Box Testing. Black Box Testing looks at the functionality of 
the software without looking at the internal structures. White Box Testing looks at these 
internal structures.



THE ULTIMATE QA TESTING HANDBOOK

29

Types of Functional Testing

• Unit Testing

• Functions

• Accessibility

• Smoke Testing

• Integration Testing

Many functional tests are designed around given requirement specifications - meeting 
business requirements is a vital step in designing any application. For instance, a 
requirement for an eCommerce website is the ability for a user to buy goods.

A practical example of this is the journey of a customer checking out their shopping 
basket. First, they should be sent to a secure payment page, then directed to bank 
security verification and then finally receive a confirmation email. Functional Testing 
verifies that each of these steps works.

Types of Non-Functional Testing

• Performance testing

• Load Testing

• Reliability

• The readiness of a system

• Usability Testing

A practical example of this is measuring how many people can check out their shopping 
baskets simultaneously.

Not every type of software test falls neatly into these two categories, though. For 
instance, Regression Testing could fit into both categories, depending on how the tests 
are run.



THE ULTIMATE QA TESTING HANDBOOK

30

Top 5 Functional Testing best practices
1. Use Exploratory Testing
Exploratory Testing involves a lot of freedom on the tester’s part. During Exploratory Testing, 
the tester investigates an app to try and identify potential bugs. This method is relatively 
unstructured, and testers have the freedom to run tests when and how they see fit. This 
simultaneous process of test design and execution is hugely beneficial for Functional Testing.

Since Exploratory Testing focuses on how the app works, rather than how it’s put together, 
testers don’t require any particular knowledge of languages like Python or Java - just a 
familiarity with QA.

Testers put on their investigative hats and explore an app in real-world scenarios on real-world 
devices. By testing on-demand with minimal preparation required, you receive fast and valuable 
direction on the bugs in your app or software product.

When leveraging Global App Testing’s crowd, for each test you receive 15-20 highly skilled 
testers, equipped with best practices in locating reproducible bugs within your app. On top 
of that, bug severity ranked results for exploratory tests are provided within 24-48 hours.

2. Automate some (but not all!) of the process 
Test automation can save time and money.

If you find your team repeatedly testing a specific function, it’s not sensible to use valuable 
resources across your DevOps or QA teams to continue to physically test it. By writing test 
cases for automation, you can run thousands of tests at once, verifying that the specific 
feature you’re targeting works as expected.

All types of Functional Testing can’t be automated, though.

Exploratory Testing, for example, requires the creativity of testers to explore the app initially 
and decide which parts of it to test. System Testing and User Acceptance Testing also require 
manual efforts. But have no fear automation fans, there are many Functional Testing tools 
available to make the process easier and more efficient!

To create a high-quality product, you need to implement a blend of manual and automated 
testing.

Creating a Requirement Traceability Matrix (RTM) is one way to ensure all business 
requirements are tested, whether by automation tools or your testing team. By ingraining 
this in your QA strategy, you’ll ensure that you discover more software bugs and cover more 
testing bases.

https://www.globalapptesting.com/best-practices-exploratory-testing
https://www.globalapptesting.com/best-practices-automated-testing
https://www.globalapptesting.com/best-practices-exploratory-testing


THE ULTIMATE QA TESTING HANDBOOK

31

3. Use well-planned test case execution
Test Case Execution is the process of testing specific workflows in your app, a crucial part of 
Functional Testing. By using Test Case Execution, your testers can work their way through 
particular functions for your mobile or web app, ensuring that they work as they should 
within the pre-planned workflow.

Let’s say you write a test case for your eCommerce app. You want to ensure that users can 
search for “red trainers,” click on a specific pair, add them to their shopping bag and then 
finally checkout. Within each of these steps, testers will be testing particular functions like 
the search bar, card payment and shopping bag to see if their results are as expected. They 
can then report on the application’s conformance to the requirement specifications, and the 
development team can make the appropriate changes.

By planning test execution rigorously, you can verify that the test case covers all 
functionalities.

4. Test early and test often
It’s critical to catch issues with functions early in the software development life cycle (SDLC) 
to prevent them from having a real impact on your company.

For example, if the checkout function of your shopping app is full of bugs, you’ll see 
a direct effect on revenue. Equally, if the “sign up” functionality on your website isn’t 
working correctly, you’ll inevitably suffer a loss of sign-ups. Running functional tests early 
dramatically reduces the chance of these revenue inhibitors from happening.

You also don’t want to wait until the last stages or the UAT (User Acceptance Testing) phase 
to determine what’s wrong!

Implement testing techniques like Unit Testing in your product’s design and development 
stages to avoid functionality issues further down the line.

5. Partner with a professional team
By partnering with a company like Global App Testing, you can shift the time spent on 
Functional Testing to a crowd of testers, so you have more time to focus on test strategy 
and analysis. This frees up team resources to develop new features and design updates, 
something only they have the skill to do.

And the cherry on top? Enjoy a newfound competitive edge, as your competitors are stuck 
in the weeds of tediously testing themselves, neglecting to spend time enhancing their 
product.

https://www.globalapptesting.com/functional-testing/test-case-execution
https://www.globalapptesting.com/


THE ULTIMATE QA TESTING HANDBOOK

32

Make  
Functional  
Testing  
part of your  
QA strategy
 
Functional Testing is essential, and when 
executed correctly, it can reduce the number 
of software bugs your customers end up 
discovering, ultimately improving their 
experience.

As aforementioned, Functional Testing is most 
effective through a combination of Manual and 
Automation Testing.

Whether you’re designing software, web apps 
or an API, it’s important that it works.Functional 
Testing is the key to understanding whether it 
does - and if it doesn’t, how to fix it.

If you’re open to learning more about how Global App Testing 
could fit in with your existing processes, why not speak with 
one of our QA experts?

https://go.globalapptesting.com/speak-to-us
https://go.globalapptesting.com/speak-to-us


Chapter 5 - 
Localization 
Testing
It’s a competitive world, and any new software product needs to keep up 
with its rivals and make an immediate impact. Every company wants to 
bring their creation to market as quickly as possible and expand into new 
ones. In doing so, it’s crucial to strike a balance between speed and quality.

A rigorous testing process must be carried out before any new app or 
website is launched to ensure a great user experience across all markets. 
For a business with global reach, Localization Testing is one of the most 
critical factors in engaging and retaining users.

This chapter will explore what Localization Testing is and how you can 
harness it most effectively. And in a world where the customer reigns 
supreme, our top five best practices for Localization Testing will help 
grow your business by delivering a product that truly delights customers.

https://www.globalapptesting.com/customers/canva


THE ULTIMATE QA TESTING HANDBOOK

34

What is Localization Testing?
Localization Testing is a software testing technique that checks whether an app or website 
offers full functionality and usability in a particular locale. If a product has been customized 
for a targeted language or region, Localization Testing verifies the accuracy and suitability of 
the content.

It’s not just about translation - the testing process makes sure that the product is adapted 
appropriately for the end-user’s cultural, linguistic and functional requirements. As well as 
ensuring your app works as effectively in one country as it does in another, a “localized” 
experience makes the customer feel like the product was developed especially for their use.

Why is localization so important?
If you plan to expand into a new country, localization is crucial. Ensuring that your product is 
designed well and works smoothly in a specific region will lend you authority and popularity, 
leading to increased market share and revenue.

In a fast-moving world, most people don’t give second chances. Customers are more likely 
to stick with a localized product that works for them, and those who encounter linguistic or 
cultural gaffes will be put off.

In short, better UX equals more sales.

Localization also offers scalability and a reduction in overall costs. Although the roll-out of 
initial testing might take time, putting this process in place will ensure that future releases 
and tests can be carried out much faster. This means you’ll be ready to move into new 
markets as soon as they emerge.

In the next section, we’ll take a look at how localization can boost your business by:

• Embracing global opportunities

• Building scalability

• Improving the testing process

• Engaging with customers



THE ULTIMATE QA TESTING HANDBOOK

35

How can localization boost your business?
Technology has connected the world like never before, and companies must take a global 
perspective to remain competitive in such an environment. Leveraging Localization Testing 
is a foolproof way to send the right message to a specific, global audience and generate 
additional revenue streams.

Embracing global opportunities
We won’t lie - setting up a successful localization process takes hard work, commitment and 
resources. But rather than thinking of it as a one-off expense, think of it as an investment in 
opening up your business to global opportunities in the future.

While major global competitors are bound to expand into new markets, local companies in 
your target region may want a piece of the pie; and they have the advantage of knowing 
their audience. Localization Testing is vital for maintaining your product’s competitive edge.

It’s worth taking a moment here to mention Internationalization Testing, which is the 
process of ensuring a product supports multiple languages and locales (whereas Localization 
Testing focuses on the validation of one particular locale or language). The two together are 
referred to as globalization.

https://www.globalapptesting.com/blog/top-5-localization-challenges


THE ULTIMATE QA TESTING HANDBOOK

36

Building Scalability 

A key benefit of Localization Testing is its scalability. This means your 
business has more scope for further expansion whenever the time is 
right for you. By focusing on localization at the development stage, 
you can build that scalability potential into the process - and ensure 
that localized versions of your product reach the market as quickly as 
possible.

It’s helpful to make sure your source content and user interface are 
flexible enough to be adapted for a different locale. For example, you 
can standardize expressions and phrasing in your original language, 
make embedded text editable within source graphics and check that 
subtitles on video tutorials are overlaid rather than burned.



THE ULTIMATE QA TESTING HANDBOOK

37

Improving the testing process
The aim of Localization Testing is to identify 
errors in translation or issues with cultural 
differences. But you’ll also find that a 
well-designed localization strategy helps 
streamline the QA workflow by finding 
ways to save time and money.

Localization is crucial for your global 
outlook, but it must work in conjunction 
with the other areas of the software 
development life cycle. For instance, there 
should be overlap with the functional 
testing team to give the localization team an 
understanding of the product architecture.

If you’ve added a new feature or fixed a 
glitch, Regression Testing should be applied 
to localization; all teams must check that 
this hasn’t impacted the basic functionality. 
When testers are scrutinizing your output 
for language-specific errors, they’ll probably 
spot opportunities for improvement in the 
original language too!

Engaging with customers
Localization is the number one way to 
build a sustainable rapport with your 
global audience. As we mentioned earlier, 
customers who feel the product is both 
relatable and usable are most likely to 
embrace it and share their opinions 
with others. This is key when working to 
increase your app store rating.

Users genuinely appreciate attention to 
detail, especially if they’re used to dealing 
with apps or websites that are glitchy 
in terms of features like translation. 
Optimizing your product for a specific 
locale will show customers that you care 
about them and want to meet their needs.

Research shows that internet users from 
non-English-speaking countries prefer to 
buy products in their native language, so 
you’d be crazy to release an app with an 
American keyboard into a market that uses 
a different alphabet! By taking cultural 
differences into account, your company will 
demonstrate sensitivity and awareness.

Customers also want full compatibility 
with their preferred devices and operating 
systems. This makes hardware compatibility 
tests a crucial element, with real users 
testing products on real devices in the 
target locale.

https://www.globalapptesting.com/blog/earn-digital-applause-draw-more-customers-to-your-app
https://insights.csa-research.com/reportaction/305013126/Marketing


THE ULTIMATE QA TESTING HANDBOOK

38

Top 5 best practices for localization 
 
While it has its benefits, localization does bring its challenges, including slower time to market, 
harder to measure ROI and higher demands on internal resources. We’ve compiled a few top tips 
to help you navigate these roadblocks to ensure localization grows - not inhibits - your business.

1. Take your time
Rome wasn’t built in a day and localization 
won’t happen overnight!

It’ll take time to assemble the resources and 
team necessary to carry out the testing. 
An additional factor impacting time is the 
research required to learn about your target 
audience and the local market conditions.

It’s critical to learn everything you can 
about the target users to tailor the 
localized experience to them. This is one 
area where automation can’t do the job 
for you. Human testers need to walk 
through the customer journey and perform 
extensive research to create highly specific 
test cases for the product.

Take time to ensure the accuracy and 
appropriateness of your translation. For 
instance, think about when you put text 
through Google Translate, translate it into a 
different language and then back to English. It 
often won’t make sense at all. That’s because 
language nuances often don’t translate 
accurately without the help of an expert.

A popular tonic water company once 
introduced its product to the Italian market 
without realizing that its name actually 
translated to “toilet water” in Italian! This 
was an expensive blunder, and confidence 
from local markets went down the drain 
- no pun intended. This only further 
demonstrates that some bugs can only 
be found by native speakers with local 
insights.

2. Test early and often
“Test early, test often” is a common mantra 
in software testing, and it definitely 
applies to localization. However, too 
many companies treat localization as an 
afterthought, tacking it on to the end of the 
process when the product is almost ready. 
This is a mistake.

Let’s say you leave Localization Testing 
until the late stages of your development 
process. You’re confident in your app and 
ready to release.

You decide to quickly translate it into the 
target language to make it accessible to 
other target markets.

Then the panic hits. Suddenly, the text 
doesn’t fit in buttons or boxes, and 
everything looks out of whack. Your whole 
design might suffer if you’re switching to 
a language that reads right-to-left, such as 
Arabic, Hebrew or Urdu.

Your team is now forced to spend a 
considerable amount of time editing code 
to make sure everything fits. What’s worse? 
The whole thing could’ve been avoided had 
Localization Testing been included earlier on.

As well as carrying out Localization Testing 
at an early stage, regular testing and 
retesting is necessary to iron out any bugs 
or glitches during the development process. 
Automation can save time, especially if 
you use a Localization Testing tool such as 
Selenium WebDriver.

https://www.independent.co.uk/news/business/news/when-happiness-mouth-leaves-bad-taste-9143329.html
https://www.globalapptesting.com/how-we-help/localise-qa-coverage
https://www.globalapptesting.com/how-we-help/localise-qa-coverage


THE ULTIMATE QA TESTING HANDBOOK

39

However, due to the nuances we 
mentioned earlier, you need to combine 
automated technology with human input. 
This is where the Agile methodology comes 
in handy, with its principles of adaptability 
and continuous feedback.

In an Agile team, the product is thoroughly 
tested and debugged as it’s created, rather 
than waiting until it’s complete. Testers 
not only find defects earlier on in the 
process, but they also develop an intricate 
knowledge of the product.

The Agile approach condenses the 
development cycle and constantly provides 
user feedback, ensuring the product adapts 
to the market during development and 
reaches customers as soon as possible. This 
lets the team prioritize product usability, 
ensuring it suits any market.

3. Make sense of the data
Analyzing data and customer feedback 
is vital for measuring your product’s 
performance and identifying areas for 
improvement. But here’s the thing - it won’t 
work unless you have a sense of what 
you’re actually measuring.

The localization process helps companies 
think about differences in language and 
culture to create an appropriate user 
experience. It stands to reason that the way 
you measure success and interpret the data 
will differ from country to country.

To prove ROI, you need to establish 
appropriate metrics for the specific region 
you’re targeting. Decide on the number of 
downloads, purchases and sign-ups you 
want to measure your success against, and 
focus your efforts on achieving these goals 
in a global market.

You could analyze the number of new 
customers acquired in global markets, the 
percentage of market share, web traffic 
by country and language and increases in 
revenue. Build support throughout your 
company for the project by delivering on 
key metrics which support your business.

And if you aren’t hitting the right numbers, 
ask yourself why? Here’s an interesting 
example of just that.

A Swedish tech company found that they 
weren’t delivering on their key performance 
indicators in Indonesia. They had low 
numbers of sign-ups and couldn’t identify 
the issue.

After a round of Localization Testing, 
they realized that it was because their 
onboarding process required a last 
name, which just under 40% of people 
in Indonesia don’t have. A large number 
of Indonesian people were not signing 
up merely due to the fact that they were 
unable to do so. Once the company fixed 
that bug, a whole new market of 262 
million people opened up.

https://www.globalapptesting.com/platform/test-results-analysis


THE ULTIMATE QA TESTING HANDBOOK

40

4. Be culturally aware
Localization isn’t a straightforward 
translation process. Cultural nuances also 
don’t often translate easily or at all. For 
example, when a famous diaper brand tried 
to expand its reach to Japan, they printed 
the typical image of a stork carrying a baby 
onto the packaging. When sales seemed 
to be dwindling, they gathered some local 
insights to figure out the cause of the 
problem.

They quickly discovered that, in Japan, the 
story goes that giant peaches bring babies 
to their parents, not storks! The cultural 
reference was utterly lost, and the company 
suffered as a result. By implementing 
Localization Testing, embarrassing or 
offensive mistakes from cultural differences 
are entirely avoidable.

Apart from accidentally causing offense, 
another pitfall is failing to make your 
product adaptable for all language content. 
For example, the user interface should be 
tested to accommodate text with larger 
lengths without distorting the alignment 
and cater to alternate writing directions.

It’s not just different alphabets and 
characters that must be accommodated. 
Think about spelling variants, numerical 
systems, currency symbols, hotkeys, HTML 
and hyperlinks. The date and time format 
will need to change for different countries, 
as will phone number formats. Then 
there are weights and measures, calendar 
differences and licensing laws particular to 
the region.

This is an area where human testing needs 
to be deployed across a wide range of 
scenarios. Crowdtesting is an effective way 
to do this, as it provides access to a large 
number of testers in different countries 
with different languages.

5. Choose a partner with global reach
Getting localization right can be a 
challenge, but you don’t have to do it alone.

There are plenty of experts who already 
have the infrastructure in place and a 
guaranteed ability to test and deploy 
products in global markets. These 
companies can help you implement a highly 
efficient localization testing process, saving 
you time and valuable resources.

By partnering with a professional 
Crowdtesting company, you can achieve 
a global reach without having to hire 
separate testing teams across the world. 
Global App Testing has 55,000 testers 
across 189 countries on hand 24/7 to test 
your product. This will ensure that your 
translations are correct, functionality is to 
a high standard and that you understand 
any cultural nuances that may apply to new 
markets.

LiveSafe, for example, is used by major 
educational institutions and corporations 
to allow users to communicate in real-
time with their organization’s security 
team. Livesafe relies on Global App Testing 
to ensure that their apps work globally 
in highly critical security situations. By 
testing in over 19 countries with Global 
App Testing, LiveSafe has confirmed that 
their app works in the countries they’re 
targeting, guaranteeing global growth and 
the safety of their users.

https://thunderbird.asu.edu/knowledge-network/its-peach-not-stork-how-pg-turned-around-its-pampers-fail-japan
https://www.globalapptesting.com/solutions/usability-testing
https://www.globalapptesting.com/
https://www.globalapptesting.com/customers/livesafe


THE ULTIMATE QA TESTING HANDBOOK

41

Reaping the rewards  
of Localization Testing
 
If you intend on becoming a global business, Localization Testing is 
a must. When done right, you’ll open the doors to millions of new 
customers across the world - and massively improve your earning 
potential.

Accurate translations and cultural sensitivity are the cornerstones of the 
process, as well as ensuring your software and content are compatible 
with a wide range of devices, operating systems and browsers. Such 
attention to detail will let your customers know that your company cares 
about their digital experiences.

The importance of researching your target market can’t be overstated, 
and it definitely pays to bring in a linguistics expert or a localization firm 
with proven expertise. That way, you can avoid any embarrassing and 
costly misunderstandings.



Chapter 6 - 
Exploratory 
Testing



THE ULTIMATE QA TESTING HANDBOOK

43

What is Exploratory Testing?
As the name implies, Exploratory Testing tasks testers with exploring an application to 
identify and document potential bugs.

Testers embark on a process of investigation and discovery to test a product effectively. 
During Exploratory Testing, testers are free to run tests how and when they decide. This 
means there’s a simultaneous process of test design and test execution.

Best practice Exploratory Testing answers the following questions:

1. Does the app perform the function it was designed for?

2. Does the app work under multiple scenarios?

3. Is app performance good enough?

4. What potential bugs are there?

These four questions are answered through a process of learning, designing and execution.

Top 3 best practices for Exploratory Testing
Best practice Exploratory Testing has three main components:

• Learning

• Designing

• Executing



THE ULTIMATE QA TESTING HANDBOOK

44

Let’s break them down a bit more... 

Learning
Testers need a comprehensive 
understanding of the app or website 
they’re testing to test it effectively. By 
understanding valuable information like 
industry awareness, company details 
and competitive benchmark data, the 
tester will have the context necessary 
to execute tests successfully. Learning, 
therefore, is central to the Exploratory 
Testing process.

Designing
A big difference between Exploratory 
Testing and Scripted Testing is in 
design. In Scripted Testing, the test has 
specific parameters or rules, whereas 
Exploratory Testing has no preset path or 
predetermined conditions. Exploratory 
testers conduct tests in a way which they 
deem fit. As a result, tests are designed 
frequently and freely, making designing 
a crucial skill for an exploratory tester. 
Therefore, you need to ensure you have 
professional testers with a varied skill set 
and can design effective test cases.

Executing
Seamless test execution is also a fundamental best practice. In Exploratory Testing, 
the tester has the freedom to execute a test as soon as they’d like to do so. As soon as 
the test is written, it can be conducted. This freedom means that nobody’s waiting on 
scripted requirements, and work can be conducted relatively seamlessly.

Exploratory Testing  in the real world
Let’s imagine you want to test a mobile gaming app.

If you chose Exploratory Testing, testers worldwide would be given very general scenarios to 
test. For example, in a gaming app, the user might expect to use tokens or in-game inventory 
items before a battle. The Exploratory Testing for this may require a tester to verify that this 
functionality works and the player can complete the battle as expected.

Exploratory Testing, in this case, involves simultaneous test design and test execution, as 
testers explore the game and the different in-game scenarios that may occur. Although 
there is a structure to the testing process, with testers planning the general scenarios they 
need to test, there’s an inherent freedom in how and when the testers navigate the app.

These kinds of tests can’t be executed via automation. While a script could check that 
tokens or inventory items are purchasable, it can’t emulate a human doing battle! This is the 
inherent human aspect of Exploratvory Testing. Since some tests can’t be predetermined 
(like a battle in a game), the human creativity required for Exploratory Testing is a key factor 
of its success.



THE ULTIMATE QA TESTING HANDBOOK

45

Difference between Scripted 
Testing and Exploratory Testing
Unlike traditional, Scripted Testing, 
Exploratory doesn’t restrict testers to a 
predefined set of instructions. Test cases 
are not written in advance, enabling the 
tester to learn and iterate throughout the 
process. This makes Exploratory Testing 
unique and extremely valuable, as testers 
can use their own creativity to discover 
bugs that the software developer may not 
have ever anticipated.

Exploratory Testing in Agile teams
Working in Agile involves adaptive planning 
and continuous improvement; the aim is to 
be able to respond to change quickly and 
efficiently. This means that Exploratory 
Testing can work exceptionally well 
with Agile teams. Increased demand for 
frequent software updates requires faster 
software development and continuous 
delivery. Testing methods need to respond 
to change quickly and seamlessly. Enter 
Exploratory Testing, where the constant 
process means bugs can be found faster 
and releases occur more frequently.

Advantages of  
Exploratory Testing

• Finding more bugs: A major 
benefit is that Exploratory Testing 
finds bugs that automation simply 
can’t. Automated tests are limited 
to the test cases that are written 
for them; they won’t test any 
bugs outside of this scope. You 
can learn more about this on our 
blog: QA vs. Humans: Can You 
Automate Everything?

• Speed of the test cycles: 
Exploratory Testing doesn’t 
require extensive planning. The 
scope of a test cycle must be 
clear, but detailed test cases 
aren’t necessary. That’s because 
testers are trusted to test what 
they believe requires testing. In 
comparison, automated tests are 
fast in test execution but can be 
time-consuming to plan.

• Idea generation: The creativity 
required of testers and the fast 
pace of Exploratory Testing means 
that more ideas are created.

Disadvantages of  
Exploratory Testing

• Getting it right is difficult: As 
previously mentioned, Exploratory 
Testing relies heavily on the 
testers. It can be an expensive 
and difficult skill to acquire, so 
you may find it difficult to find 
exploratory testers.

• Measuring ROI can be tricky: 
Evaluating the success of 
Exploratory Testing in the short 
term can prove difficult. Think 
of running a marathon - you 
can’t train ten hours per day a 
week before the race and expect 
to do well. It takes months of 
regular training to be successful. 
Exploratory Testing is the same. 
Long-term consistency will 
generate better results than short-
term intensity.

https://conference.eurostarsoftwaretesting.com/qa-automation-vs-humans-can-you-automate-everything/
https://conference.eurostarsoftwaretesting.com/qa-automation-vs-humans-can-you-automate-everything/


THE ULTIMATE QA TESTING HANDBOOK

46

When to employ Exploratory Testing
 
We have discussed what Exploratory Testing is, the advantages and disadvantages of the 
technique, and how it can be used in Agile, but how do you know when you should actually 
implement it?

 
5 scenarios where Exploratory Testing can augment your testing strategy:

1. You’re not sure what tests to run.

2. You want to diversify the testing process after a cycle of scripted 
testing.

3. You need rapid feedback on a product.

4. You want to understand the ins and outs of a new release quickly.

5. You want to find more bugs!

Exploratory Testing is a creative and diverse testing method. Employing this 
technique can help you find more bugs and achieve fast results, as testers are 
free to write and execute test cases seamlessly.



Chapter 7 - 
Manual 
Testing



THE ULTIMATE QA TESTING HANDBOOK

48

What is Manual Testing?
Manual Testing occurs when human testers 
check the quality of a new application 
without using automation tools or scripting. 
This type of testing identifies bugs or 
defects, verifies the product is error-free 
and confirms it meets specified functional 
requirements.

The process compares the behavior 
of a software application (or one of its 
components or features) with the expected 
behavior that was defined in the initial 
phases of the software development life 
cycle.

Manual testers design test cases or 
scenarios with 100 percent test coverage 
and execute them one by one before 
verifying the results. They ensure that 
any reported issues are passed to the 
development team to fix and then tested 
again.

Automating everything is impossible, so 
Manual Testing is an essential part of your 
QA testing strategy.

Examples of Manual Testing
When assessing usability and accessibility, 
Manual Testing is especially beneficial. 
For example, if you were launching an 
eCommerce website, you would check 
elements including:

• Optimization for a range of 
browsers and devices

• Smooth checkout process

• Fast-loading hi-res images

• Links to social media channels

During Manual Testing, testers check the 
code that drives each of these functions 
to ensure they work as the client intends. 
Manual testers are also able to comment on 
the look and feel of the website, evaluating 
it from the user’s perspective.

Manual Testing vs. Automation 
Testing
As its name suggests, Manual Testing 
requires human involvement, while 
Automation Testing uses machines to 
execute test cases automatically. Any type 
of application can be tested manually, 
however, Manual Testing is especially 
suitable for assessing user interfaces (UI) 
and user experience (UX), and for ad-hoc or 
Exploratory Testing.

Automation Testing is recommended only 
for stable systems, which are likely to have 
fewer bugs, and is most commonly used 
for Regression Testing and Performance 
Testing. Testing tools like JMeter and 
Selenium are commonly employed.

Advantages and Disadvantages of 
Manual Testing
Manual Testing is essential in ironing out 
the highest number of bugs, however, it 
does have its downsides. We’ve outlined 
the primary pros and cons to better 
inform you of the challenges and rewards 
associated with this method of testing. 
 
Let’s take a look...



THE ULTIMATE QA TESTING HANDBOOK

49

1. Accurate
Automated tools are smart, but they’re not as smart as humans. Certain scenarios 
require a real person with real-world experience. So when it comes to identifying 
bugs and glitches in software, Manual Testing is more likely to catch ’em all.

2. Human Insight
Manual software testers bring valuable human perspective by 
focusing on the look and feel of a product. They can evaluate the 
application’s visual components and highlight UI and UX issues by 
adopting the mindset of the end-user.

3. Adaptable
The manual method is beneficial in ad-hoc testing, as it’s easily 
adaptable when unplanned changes are made to the software. 
The human input means test cases can be redesigned or 
tweaked with relative ease. Manual Testing is also agile enough 
to be performed on a broad range of applications.

4. Saves Money
Although Manual Testing requires skilled labor, it can in fact save 
money, as it doesn’t require expensive tools. Automation tools 
are costly to install and take ample time to set up and learn.

Advantages of Manual Testing

https://www.globalapptesting.com/blog/automated-qa-testing


THE ULTIMATE QA TESTING HANDBOOK

50

1. Resource Heavy
Manual Testing is undeniably more time-consuming than automation, elongating the testing 
process and sometimes increasing costs. It also requires a large number of human resources, 
with testers requiring considerable analytical and creative skills.

2. Not Always Suitable
Certain types of testing, such as Performance and Load 
Testing, are not suitable for manual methods. For example, 
humans can’t simulate a large number of users for a 
performance test in the way a machine could. Large amounts 
of test data are also more efficiently handled by automation.

3. Potential for Error
This is the flipside to #1 on the “pros” list. Humans are 
smarter than machines in many ways, but they’re also 
prone to human error. Since Manual Testing is repetitive 
and tedious, it’s possible for testers to lose concentration, 
ultimately leaving an error undetected.

4. Not Reusable
As the Manual Testing process can’t be recorded, manual tests are therefore not reusable. 
As a result, separate test cases for each new application must be developed, a process much 
easier to complete through Automation Testing where the scripts are reusable.

Disadvantages of Manual Testing



THE ULTIMATE QA TESTING HANDBOOK

51

Types of Manual Testing  
Manual Testing varies, with different types suited to different software and environments. 
Let’s take a look at some of the most commonly used techniques.

 
Acceptance Testing
The client or end-user performs User 
Acceptance Testing (UAT) to confirm if the 
software meets the agreed requirements. 
Sometimes called Pre-Production Testing, 
it occurs during the final phase before 
releasing the product to market.

UAT is an example of Functional Testing, and 
types of Acceptance Testing include Alpha 
(executed within the organization) and Beta 
(where the application is released to a limited 
market to generate user feedback).

Black Box Testing
Also known as Behavioral Testing, 
this method analyzes an application’s 
functionality from the end-user’s 
perspective. The internal code structure is 
not visible during testing (hence the name 
“Black Box”), so testers are only aware of the 
inputs and expected outputs of the software.

Black Box Testing has several subdivisions, 
including Functional Testing for 
requirement compliance, Smoke Testing to 
assess basic functionality and partitioning 
(dividing software into groups that are 
expected to exhibit similar behavior).

 
I ntegration Testing
Integration Testing is the process of testing 
an application with two or more integrating 
components. It’s performed once the 
individual components have been unit-
tested and identifies problems with the 
interfaces and their interactions.

The two main methods are the Bottom-Up 
approach (moving steadily from the bottom 
module to the top module) and Top-Down 
approach (the opposite).

 
System Testing

System Testing means testing the system as 
a whole once all its components have been 
unit-tested and integrated. It checks that 
the complete application works as intended 
by comparing it against the original 
requirements.

Also called End-To-End Testing, it typically 
involves Installability Testing (does the 
software install correctly?) and Recovery 
Testing (can the application recover from 
hardware crashes and network failures?).



THE ULTIMATE QA TESTING HANDBOOK

52

Unit Testing
This form of testing evaluates the individual units or components of an application’s source 
code to ensure each function performs as intended.

Developers usually conduct Unit Testing rather than engineers, as it requires detailed 
knowledge of the internal program design and code. Also known as Module Testing or 
Component Testing, it simplifies the debugging system and helps to detect and protect 
against bugs in the future.

White Box Testing
Sometimes called Transparent Box Testing or Structural Testing, this method of testing 
checks an application’s internal structures. It’s performed by the developer, who checks the 
software’s internal codes before passing it to a test engineer.

White Box Testing focuses on strengthening security and improving the software’s design 
and usability. A combination of both Black Box and White Box Testing is known as Gray Box 
Testing.



THE ULTIMATE QA TESTING HANDBOOK

53

While several different types of Manual Testing exist, the overall testing process is the same 
in all. Testing can be conducted in-house, however, some businesses select a specialized 
company to handle their testing.  
 
There are roughly six stages in performing Manual Testing:

1.
Understand requirements
Testers begin Manual Testing by first understanding the project’s requirements 
fully. They consider questions like: What does the client expect from the 
application? What problem is it aiming to solve for end-users? Testers must 
analyze all requirement documents to recognize the expected behavior of the 
software and exactly what needs to be tested.

2.
Prepare test cases
Once the requirements are understood, testers can draft test cases to cover 
various scenarios, such as what happens when a user enters an invalid password 
or how the software would cope with a crash. These test plans establish a 
sequence for testing functionality and usability across the entire application.

3.
Review test cases
It’s helpful to review the draft test cases with team leaders and the client to 
ensure they cover all bases and make any amendments before commencing the 
execution. This will save time in the long run.

4.
Execute test cases
Manual Testing can now be carried out using any of the techniques listed in 
the previous section. In addition to finding bugs, the aim is to identify potential 
pain points for users and loopholes that hackers could exploit. Testers execute 
test cases one by one, sometimes using bug-tracking tools like Jira.

5.
Report bugs
When bugs are identified, the testing team will pass the metrics to the 
development team in the form of a test report. This contains details on how 
many defects or bugs were found, how many test cases failed and which need 
to be re-run.

6.
Test again
Once the development team has fixed the bugs, the software is handed back 
to the testers. They carry out the test cases again to confirm the problem has 
been resolved.

https://www.globalapptesting.com/platform/test-results-analysis


THE ULTIMATE QA TESTING HANDBOOK

54

Combining  
Manual and Automated Testing
 
Although automation is a time-saver, Manual Testing remains a vital 
part of software development. Human testers embody the mindset of 
the end-user and imagine multiple test scenarios for an application or 
function.

It’s worth remembering that while software testing attempts to find as 
many bugs as possible, identifying all possible defects is quite literally 
impossible. Manual testers often spot issues that a machine could 
overlook, but they’re also susceptible to human error.

Using a combination of Manual and Automated Testing is the most 
effective way to catch the highest number of bugs and defects. Global 
App Testing offers the best of both worlds by blending human insight 
with intelligent automation. Contact our team to learn more from one 
of QA experts.

https://go.globalapptesting.com/speak-to-us


Chapter 8 - 
Agile 
Testing



THE ULTIMATE QA TESTING HANDBOOK

56

What is Agile software development?
Agile Testing has become a critical part of application lifecycles, significantly impacting 
software development, testing and quality assurance. It’s also gained widespread acceptance 
as a crucial driver for the delivery of high-quality products. In this chapter, we take a deep 
dive into the world of Agile Testing to provide a better understanding of how it works and 
how it can help you.

To understand Agile Testing, it’s vital first to understand what the Agile development 
methodology involves. It’s an umbrella term encompassing many practices that are quite 
different from traditional development techniques.

Let’s start by looking at the key principles of Agile software development. 

The four core values are:

• To focus on people rather than processes and tools

• That a working piece of software is more important than detailed documentation

• That ongoing collaboration with customers matters more than a fixed contract

• To be responsive to change, rather than sticking to a plan

As the name implies, an Agile methodology is focused on responding to change. A team 
might use many frameworks, such as Scrum or Kanban, but all of these center on a 
collaborative approach.

A traditional development approach might separate team members based on the area 
they’re working on and slowly add pieces together to create a finished product. With Agile, 
continuous integration is key - the whole team collaborates, and new features are added as 
they work. It creates an entirely different software development life cycle.

https://www.guru99.com/agile-testing-a-beginner-s-guide.html


THE ULTIMATE QA TESTING HANDBOOK

57

What is Agile Testing?
 
Agile Testing operates under the philosophy that continuous testing is a 
crucial part of development - on par with coding.

In Agile, testing is integrated directly into the development process 
so that bugs are discovered as early and as often as possible. As a 
result, testers can identify problems at every point in the development 
process, moving the product quickly towards release.



THE ULTIMATE QA TESTING HANDBOOK

58

Traditional testing method vs. Agile Testing
 
To keep things from breaking in the customers’ hands, testers attempt to break it first - 
and then proceed to have it fixed. In the traditional waterfall method of development, the 
sequence of events looks like this: 

Requirements

System Design

Implementation

Integration and Testing

Deployment of System

Maintenance

 
With this method, the next step doesn’t begin until the previous step has been completed 
fully, so the testing team doesn’t receive the product until late in the development cycle. 
This can be a real challenge for your software testing team, as any bugs they catch at this 
point will be difficult and costly to eradicate from the product.

Testers who enter the process at this juncture are also unable to ask the right questions 
and perform the right tests because there’s little feedback from other members of the 
development team (who are sometimes viewed as ‘the enemy’) or from customers.

Testers are forced simply to wait for the product to come down the assembly line (or 
waterfall), then use a narrow set of skills to decide whether it should be kicked back to a 
previous step in the development process.

With Agile, the test plan is in place throughout. Every time a new update is made to the 
code, the test team gets their hands on it, feeding back directly to the developers. These 
test cycles can also feature automated tests and a small selection of end-users.

http://toolsqa.com/software-testing/waterfall-model/
https://en.wikipedia.org/wiki/Agile_testing


THE ULTIMATE QA TESTING HANDBOOK

59

Key principles of Agile Testing
 
In the book, Agile Testing: A Practical Guide for Testers and Agile Teams, Lisa Crispin and Janet 
Gregory distilled Agile testing into 10 principles. Since its publication, these 10 principles 
have been widely accepted as the foundation of Agile Testing. These demand that you:

1.
Provide continuous feedback. Agile testers don’t just test constantly. 
They’re also responsible for distributing the results of those tests and 
facilitating the provision of feedback from customers to developers to create 
a more robust product.

2.
Deliver value to the customer. While this is the second principle, it’s the 
most crucial. The end goal of every action taken by an Agile tester is to create 
the best product possible for the customer.

3.
Enable face-to-face communication. The Agile tester’s role is to reduce 
confusion and errors by communicating directly with developers and enabling 
customers to communicate directly with developers.

4.
Have courage. Developers can be defensive about their work. To meet 
their goal and provide value to the customer, Agile testers must fight for the 
changes and fixes that need to be made.

5.
Keep it simple. Agile testers act on the aphorism that simplicity is the 
ultimate in sophistication. For testing, that means performing only those 
tests that are necessary and all tests that are necessary. For the product, that 
means delivering the simplest possible product that delivers the most possible 
value.

6. Practice continuous improvement. Agile testers are keen learners; they’re 
never done learning how to do their job better.

7. Respond to change. Agile testers are adaptable and flexible, keeping up with 
feedback from user stories and changes in the product and marketplace.

8.
Self-organize. Instead of waiting at an assigned seat on the assembly line, 
Agile testers spring into action at every point in the process. They actively 
seek out problems and bring people together to solve them.

9.
Focus on people. Agile testers are collaborative, preferring human 
interaction to technology. Their focus on people enables them to deliver a 
product that prioritizes usability and utility.

10.
Enjoy. No one is as successful at meeting their goals as when they enjoy 
what they’re doing. Agile testers who enjoy the work are able to deliver the 
greatest possible value to the customer.

https://www.amazon.co.uk/Agile-Testing-Practical-Addison-Wesley-Signature/dp/0321534468
https://dzone.com/articles/agile-testing-principles


THE ULTIMATE QA TESTING HANDBOOK

60

The typical profile of an Agile tester
 
Derived from the above principles, an Agile tester typically possesses:

• Strong communication skills

• A diverse, technical-based skill set

• Familiarity with a variety of testing tools and test automation

• An ability to collaborate with others effortlessly

• A willingness to embrace change

• An ability to liaise with everyone from DevOps to business analysts

• Broad experience in Exploratory Testing

• A results-oriented personality

• A passion for delivering value in business

Types of testing in Agile
A broad range of methodologies has been developed for Agile Testing processes. Below are 
four of the most popular Agile Testing methods currently in use. While no single procedure 
is perfect for a specific product, these frameworks are useful as starting points from which 
to generate a bespoke approach:

1. Acceptance test-driven development
ATDD is a form of TDD (test-driven 
development). It embraces the collaborative 
nature of Agile Testing, bringing together 
customers, developers and testers to create 
acceptance tests from the customer’s point 
of view. Only once these tests have been 
created is the corresponding functionality 
developed.  
 
It’s easy to make test cases with this style 
of workflow. This gives developers direct 
insight into what customers want and 
how the product will be used, removing 
ambiguity from the process and reducing 
the chances of significant errors being 
made.

2. Behavior-driven development
BDD is based on and enhances test-driven 
development and acceptance test-driven 
development (ATDD). Using their structure 
adds the identification of correct business 
outcomes and performs tests based on 
those preferred outcomes.

BDD has five steps:

1. Describe the behavior.

2. Write the step definition.

3. Run and fail.

4. Write code to make the step pass.

5. Run and pass.

https://reqtest.com/testing-blog/agile-testing-principles-methods-advantages/
https://www.qasymphony.com/blog/agile-methodology-guide-agile-testing/


THE ULTIMATE QA TESTING HANDBOOK

61

3. Exploratory Testing in Agile
Exploratory Testing is a cyclical method, progressing from test design > test execution > 
analysis > learning, before beginning the loop again. The tests themselves are not scripted; 
instead, they’re generated by Agile testers as the product is explored, requiring the tester to 
make full use of their unique skill set.

Exploratory Testing is the closest testers get to interacting with a product precisely as it will 
appear “in the wild.” It’s a great way to find out quickly if you have working software, and it 
allows testers to identify bugs that wouldn’t be found through other testing methodologies.

4. Session-based testing
Like BDD does for ATDD, session-based testing builds on and refines Exploratory Testing.

The strength of Exploratory Testing - the creativity of the people who do it - can also be its 
greatest weakness. Session-based testing attempts to remedy this by adding structure. First, 
before a test session begins, a charter is created. Second, uninterrupted testing sessions 
take place, focusing mainly on a single charter. The entire session is then reported on, and 
the manager is debriefed after the test. The additional structure ensures that all product 
areas are thoroughly tested and avoids backlogs building in any particular area.

Agile Testing quadrants
With these and other testing methodologies, it can be difficult to assess which type of test 
should be run, how often it should be run, when it should be run, and who it should be run 
by. There are so many types of tests - acceptance testing, regression testing, unit testing, 
and more. There’s also the question of whether manual or automated testing is better suited 
for the current iteration of the product. Gregory and Crispin created the concept of Agile 
Testing quadrants, which provide a taxonomy for tests.

According to Crispin, the two left-hand quadrants help teams know which code to write 
and determine when they’re done writing it. The two right-hand quadrants help teams learn 
more about the code they’ve written, providing feedback to the left-hand quadrants.

• Q1 - The Automated Quadrant contains tests designed to improve the code of the 
product being created; they’re performed to help the team create a better product.

• Q2 - The Automated & Manual Quadrant contains tests designed to improve the 
business outcomes of the product being created; they’re performed to help the 
team develop a product that drives value for the business and customers.

• Q3 - The Manual Quadrant contains tests to provide feedback for tests in quadrants 
1 and 2 by testing the product and user experience to ensure business outcomes.

• Q4 - The Tools Quadrant contains tests that use technology to ensure the code 
fulfills all nonfunctional requirements such as security and compatibility.

https://searchsoftwarequality.techtarget.com/tip/Agile-testing-quadrants-Guiding-managers-and-teams-in-test-strategies


THE ULTIMATE QA TESTING HANDBOOK

62

There are three simple benefits to 
adopting Agile Testing: a happier 
team, a higher quality product and 
faster delivery. Achieving this trifecta 
is worth the effort put into developing 
an effective Agile Testing framework.



THE ULTIMATE QA TESTING HANDBOOK

63

Advantages of Agile Testing
1. A higher-quality product
Agile enables testers to detect more defects earlier in the development process.

One of the Agile principles is “continuous feedback.” The doctrine of starting testing 
concurrently with development means bugs can be eliminated soon after they appear. 
Each iteration of the product is tested thoroughly and debugged as it’s created, rather than 
waiting until it’s finished. Testing also involves every member of the development team, so 
the skills of developers and testers are leveraged to produce a perfect product.

Another outcome of continuous feedback combined with early and frequent testing is 
testers developing an intricate product knowledge. Depending on the methodology of 
testing used, they can combine that knowledge with customer input to help developers 
create a superior product.

2. Fast delivery
With Waterfall Testing, the initial stages of development and eventual release into the 
market are separated by months, if not years. As a result, features or the entire product can 
be completely irrelevant by the time it reaches customers.

Agile Testing methodology both compresses the development cycle and constantly provides 
customer feedback, ensuring the product adapts to the market during development and 
reaches customers as soon as possible.

3. A happier team
The last principle on the Agile Testing list is no mistake: enjoyment. Agile Testing 
necessitates close interaction between all team members, creating a happier, more 
enjoyable and more productive workplace. Developers, testers and customers work side by 
side to create the best product and the most value possible.

 
Crispin and Gregory say it best:

“A team that guides itself with Agile values and principles will have 
higher team morale and better velocity than a poorly functioning 
team of talented individuals.”



THE ULTIMATE QA TESTING HANDBOOK

64

Disadvantages of Agile Testing 
No system is perfect. Improperly implemented, Agile Testing can weaken team structure 
and product development, preventing a viable product from ever being released. Even when 
properly used, all Agile methodologies have their weaknesses. For example, Exploratory 
Testing can lack the structure necessary to ensure a product is tested comprehensively; 
ATDD accounts for customer feedback but not for business outcomes.

The emphasis Agile Testing places on people can also be its downfall. If Agile testers are 
excluded from the team they need to be closely integrated with, they’re rendered useless. If 
a single skilled Agile tester leaves, it can prove to be a major setback for the development of 
the product.

Finally, since everyone in the team performs testing, the muddied hierarchy could lead to 
confusion and conflict. Methodologies like Scrum attempt to circumvent this by having 
“scrum masters,” but this has the potential to fall back into a more traditional method rather 
than staying truly Agile.

Agile testing strategy
With dedication, each of these pitfalls can be overcome and the three powerful benefits 
experienced. The first step towards successful Agile Testing is determining when Agile 
Testing shouldn’t be used. Blind adoption of Agile Testing can result in a weak, crash-prone 
product.

Here are a few cases in which Agile may not be the best way to test:

1. When the project scope is crystal clear and very unlikely to change

2. When the project is governed by a single product owner or stakeholder with 
minimal requirements

3. When the people on your team lack the skills necessary to perform Agile Testing

4. When the customer insists on using a traditional waterfall approach to testing

Once you’ve determined that Agile Testing will benefit your team, your product and your 
customers, you should spend as much time as necessary to pick the right methodology and 
create a process for testing using the four-quadrant model.



THE ULTIMATE QA TESTING HANDBOOK

65

To counteract the possibility of testers’ exclusion, testers should work in as close physical 
proximity to the developers as possible. They should meet with them often to see what 
they’re currently working on and to give them a chance to review the tests that have been 
developed. Taking an iterative approach here and in the testing process itself can help 
connect the teams early and help with later collaboration.

Testers can open doors for themselves by providing helpful feedback based on interactions 
with both developers and customers. In short, they should make themselves indispensable 
to developers to be able to perform their job well.

Make Agile Testing successful
The greatest thing that can be done to guarantee the success of Agile Testing for a product 
is to hire people who have the essential characteristics of an Agile tester and build a culture 
of self-organization and independent thinking in the entire organization.

That environment will naturally result in “stable infra” without sacrificing speed, resulting in 
happier workers delivering a better, more valuable product - faster - to a satisfied customer.

v



Chapter 9 - 
Usability 
Testing



THE ULTIMATE QA TESTING HANDBOOK

67

Integrate Usability Testing into your SDLC
As part of Functional Testing or conducted standalone, Usability Testing provides valuable 
real world feedback from real world users on real devices - whether localized or non-
localized.

Ensure better engagement and adoption through Usability Testing
Experienced testers walk in the footsteps of your users, providing feedback that can then 
be translated into future product improvements. Elements including linguistics, content and 
functionality are reviewed, delivering a holistic analysis of your app.

Usability Testing is conducted with the following in mind:

• Support feature development. Confirm that new features feel intuitive and are 
engaging for customers before launch.

• New market localization. Determine cultural nuances of new markets.

• Remove language barriers. Verify content and app flows for local users with real, 
local users.

• Tailored flexibility. Receive feedback from multiple markets or even just one.

v



Final 
Thoughts



THE ULTIMATE QA TESTING HANDBOOK

69

Developing your own QA testing strategies 
 
An efficient and effective QA testing strategy will readily provide the information needed 
by your design and development teams to produce a quality app. Remember that software 
quality doesn’t depend on testing but instead on the outcome of your QA tests and how you 
use this data.

When designing your approach to QA testing, remember to adapt it to the product you’re 
developing. 

QA testing best practices:

1. Test one thing at a time: Tests should maintain clear objectives, focus on 
features or examine your interface or security.

2. Understand the types of testing on offer: Remember to learn the nuances 
between different types of tests to understand their business impact.

3.
Use Regression Tests: Testing a main feature once isn’t enough. New 
additions to the code repository can interfere with features that previously 
passed tests.

4.
Report and track bugs: Determine how bugs will be reported and what kind 
of data is needed. Will you use an open-source bug tracking tool or build one 
that’s specifically suited to your workflow?

5.
Leverage analytics: Determine which QA metrics to track. Keep records of 
every test conducted and use this data to determine where bugs are likely 
to occur. This data will help you to develop new tests that address problem 
areas.

6. Choose the right environment for tests: Try covering a wide range of 
scenarios, including different devices, OS, and user profiles.

7.
Use unit and integration tests: Unit Testing isolates each component of your 
app, while Integration Tests assess how well each subsystem works. Run 
unit tests in parallel to save time, but don’t move onto integration tests until 
you’ve ensured individual components work as they should.

8.
Don’t neglect the UI: Leverage functional tests performed by human testers 
to perform end-to-end scenarios and establish a feel for the UI of the app. It 
might be best to wait until issues detected during unit and integration tests 
are resolved.

https://www.globalapptesting.com/blog/the-ultimate-guide-to-software-testing-how


THE ULTIMATE QA TESTING HANDBOOK

70

Achieving high quality and speed 
 
Whether you’re building a web application, downloadable software or an API, high quality 
and speed should remain at the top of your priority list. It’s essential to regularly review your 
QA testing process for efficiency as you move through the different cycles of your project.

Remember to align quality objectives with user expectations and employ them when writing 
test cases. Working with a clear set of quality objectives will help developers, testers and 
designers understand what’s expected of them better and foster an environment where 
everyone owns quality. 

Creating such a culture of quality across your business will not only increase confidence in 
upcoming releases and drive more return on investment, but it will also inevitably alleviate a 
few headaches in the process.



linkedin.com/company/global-app-testing

twitter.com/qaops

www.globalapptesting.com

info@globalapptesting.com

UK +44 (0) 330 808 0106

US +1-800-461-2670
facebook.com/globalapptesting


